Monitoring to Verify Confinement

Jeffrey D. Wolt

idwolt@iastate.edu

Biosafety Institute for Genetically Modified Agricultural Products
(BIGMAP)

lowa State University

Presented at the USDA Workshop on Confinement of Genetically
Engineered Crops During Field Testing

13 – 15 Sep 2004

plan of presentation

- monitoring context
- monitoring approaches
- monitoring and QEA
- monitor and respond strategies

monitoring context

- focus on confinement of PMP/PMI
 - corn as base of experience
 - crop-to-crop gene flow
 - integrity of food/feed supply
- confinement and public policy
- confinement concern
 - episodic release to food/feed supply
 - accumulation in breeders seed

confinement and public policy

- rights-based criterion
 - primary concern is not outcome, but process and allowed action
- zero risk criterion
 - "independent of benefits and costs, and of how big the risks are, eliminate, or do not allow the introduction of, the risk"

Morgan and Henrion. 1990. <u>Uncertainty: A Guide to Quantitative Risk and Policy Analysis</u>.

confinement state-of-the-art

- commercial seed supply shows 99+% trait purity
 UCS. 2004. Gone to Seed.
- Federal seed law mandates ≤10-3 frequency of unintended trait presence in foundation seed (99.9% pure)
 - ... and 99.5% purity for certified corn
- current practice meets or exceeds this standard

breeders' seed maintenance (pre-foundation seed)

- 30 seed each from 20 ears in unique rows
- 200 seed per ear
- 5 plants per row are hand pollinated
- 1 plant of the 5 is advanced to the next generation
- repeat for a second generation
- if OC frequency due to in-flow is 0.001,
- and no ability to detect,
- frequency for 1 contaminant seed to be retained in breeder's seed
 - 1 in 10⁶, if intrusion is episodic in generation 1

99.99+% pure

- 1 in 250, if in generation 2 or recurring over generations
 99.6% pure
- if breeder is <u>able to detect</u> and rogue off-types ... likelihood of retention further reduced (10- to 10,000-fold)

monitoring breeders' seed

- limit recurrent presence of trait
- minimize potential for magnification through seed/grain channel
- focus monitoring efforts
 - in a given year, ca 10 acres breeder seed vs.80 million acres grain

approaches to monitoring

- monitor for physical presence
- monitor for likelihood of escape
- monitor for process integrity

monitor for physical presence

- monitor pollen
 - indirect
 - pollen must be viable, reach a receptive plant, compete with receptor pollen, and effectively pollinate
- monitor outcrossing into receptor field of concern (or surrogate sentinel plot)
 - restricted analytical sensitivity
 - sample size constraints
 - high error rate (false positives/negatives)

zero tolerance (0% threshold) seed analysis perspective

- exact definition = 0% lot impurity
 - must test entire lot
- hidden threshold = 0% in sample
 - don't ask, don't tell
- zero deviant plan = 0% positives in sample
 - sensitive to false positives
 - high developer risk

monitor for physical presence

- detect and confirm 0.1% OC to a receptor
 - analyze 3000 seed and accept zero positives with 5% chance of accepting a field above 0.1%
- detect and confirm 0.01% OC in a receptor field
 - analyze 100 pools of 300 seed each and accept zero positives with 5% chance of accepting a field above 0.01%
 - analyze 50 pools of 320 seed each and accept zero positives with 20% chance of accepting a field above 0.01%
- detect and confirm at 0% OC to a receptor
 - analyze every seed

monitoring with sentinel plots

- detect and confirm decline over distance
- extrapolate to nearest field of concern

- limitations of approach
 - verification of model integrity
 - design and sampling intensity
 - extrapolation beyond data

monitor for physical presence

- effective and reasonable for traits at 200m, but limited practicality at 1600 m
 - limit of detection
 - absence of validation data to verify extrapolation

monitor for process integrity

- design compliant processes
- use redundancy to address uncertainties
- monitor and audit process

BIGMAP Biopharma Confinement Project

QEA for process integrity

- describe process flows for confinement
- use QEA to
 - identify process uncertainties
 - identify critical control points
 - understand nature of magnitude of process failures

describe process flows for confinement

Pollen management

- Use trained personnel for pollen management sub-processes and cleaning
- Use approved procedures for pollen management sub-processes and cleaning
- Use dedicated and/or clean equipment for pollen management sub-processes
- Institute appropriate pollen controls
- Conduct pre-pollination identification and removal of off types/breakers
- Conduct post-pollination identification and removal of off types/breakers
- Confirm temporal and spatial isolation standards are achieved throughout the pollen shed interval
- Confirm overall pollen management sub-processes compliance

Harvest management

- Use trained personnel for harvest sub-processes and cleaning
- Use approved procedures for harvest sub-processes and cleaning
- Use dedicated and/or clean equipment for harvest sub-processes
- Conduct machine harvest in conformance to standards
- Conduct hand harvest operations to recover missed/dropped ears
- Document disposition of biogenic materials through harvest sub-processes
- Confirm overall harvest sub-processes compliance

identify process uncertainties

understand process failures

relative number of fugitives	Deterministic	Distributional result	
	result	50 th percentile	90 th percentile
<u>Outcrossi</u>	ng (to field at 1.61	<u> </u>	26-10 250
Fully conforming	1	6	16
Partially conforming			
Male sterility system		59	166
Detasseling		50	100
Male sterility system + Detasseling		500	1,000
Non-conforming		1,467	15,333
<u>Harves</u>	st loss (left in field	<u>d)</u>	
Fully conforming	2,500	2,500	4,333
Partially conforming			
Combine		20,000	73,333
Ear picker		6,000	10,333
Non-conforming			
Combine		60,000	176,667
Ear picker		7,333	19,000
<u>Harvest</u>	loss (harvest mix	ing)	
Fully conforming	nil	nil	nil
Partially conforming			
Combine		1,200	
Ear picker		120	
Non-conforming		30,000	

monitor for likelihood of escape

- physical model for pollen flow/outcrossing
- site and confine to meet a predetermined confinement goal
- real time monitor key attributes of fugitive loss
 - wind speed, direction & timing; humidity; temperature
- identify departures from confinement goals

monitor and respond

- monitor, model, and identify departures from confinement goals in real time
- identify at-risk receptor fields
- segregate product from at-risk field prior to harvest (channel or destroy)

summary

- why monitor (PMPs/PMIs)?
 - independent of risk/benefit, do not allow introduction
- what to monitor?
 - line development and breeders' supply
 - minimize the possibility for recurrent presence
- how to monitor?
 - process integrity
- what does zero mean?
 - verification/validation of monitoring strategies/models
 - resolution of monitoring objective
- risk vs. zero tolerance?

BIGMAP

Biosafety Institute for Genetically Modified Agricultural Products

Iowa State University

seed supply and production

database development

Satish Rai

seed quality and analysis

Manjit Misra

Director, BIGMAP

BIGMAP will provide science-based analysis of the risks and benefits of genetically modified plant and animal products. It will provide guidance and education to help safeguard consumers and the environment.